Fixed point theorems in probabilistic analysis

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled common fixed point theorems for $varphi$-contractions in probabilistic metric spaces and applications

In this paper, we give some new coupled common  fixed point theorems for probabilistic $varphi$-contractions  in Menger probabilistic metric spaces.  As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improvethe corresponding results given by some authors. Finally, we give one exa...

متن کامل

Some new fixed point theorems in generalized probabilistic metric spaces

In this paper, we introduced the notion of α-ψ-type contractive mapping in PGM-spaces and established some new fixed point theorems in complete PGM-spaces. Finally, an example is given to support our main results. c ©2016 All rights reserved.

متن کامل

Some fixed point theorems and common fixed point theorem in log-convex structure

Some fixed point theorems and common fixed point theorem in Logarithmic convex structure areproved.

متن کامل

Approximate fixed point theorems for Geraghty-contractions

The purpose of this paper is to obtain necessary and suffcient conditionsfor existence approximate fixed point on Geraghty-contraction. In this paper,denitions of approximate -pair fixed point for two maps Tα , Sα and theirdiameters are given in a metric space.

متن کامل

Fixed point theorems for $alpha$-contractive mappings

In this paper we prove existence the common fixed point with different conditions for $alpha-psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1976

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1976-14091-8